
Enhydris Documentation
Release b

National Technical University of Athens

May 28, 2015

Contents

1 About Enhydris 3
1.1 General . 3
1.2 Presentations, documents, papers . 4

2 Installation and configuration 5
2.1 Download Enhydris . 5
2.2 Prerequisites . 5
2.3 Creating a spatially enabled database . 7
2.4 Configuring Enhydris . 8
2.5 Initializing the database . 8
2.6 Running Enhydris . 9
2.7 Post-install configuration . 9
2.8 Settings reference . 9

3 Copyright and credits 13

4 The database 15
4.1 Main principles . 15
4.2 Lookup tables . 16
4.3 Lentities . 16
4.4 Gentity and its direct descendants: Gpoint, Gline, Garea . 17
4.5 Additional information for generic gentities . 18
4.6 Station and its related models . 20
4.7 Time series and related models . 21

5 Webservice API 25
5.1 Overview . 25
5.2 Client authentication . 25
5.3 Generic API calls . 25
5.4 Creating new time series and stations . 26
5.5 Appending data to a time series . 26
5.6 Timeseries data and GentityFile . 26
5.7 Cached time series data . 27

6 dbsync — Database Syncing 29
6.1 DBSync Objects . 29
6.2 DBSync Management Command . 30

7 permissions — Permissions 35

i

7.1 Permission Objects . 35
7.2 User/Group methods . 35

8 Indices and tables 37

Python Module Index 39

ii

Enhydris Documentation, Release b

Enhydris is a free database system for the storage and management of hydrological and meteorological data. It allows
the storage and retrieval of raw data, processed time series, model parameters, curves and meta-information such as
measurement stations overseers, instruments, events etc.

General documentation:

Contents 1

Enhydris Documentation, Release b

2 Contents

CHAPTER 1

About Enhydris

1.1 General

Enhydris is a system for the storage and management of hydrological and meteorological time series.

The database is accessible through a web interface, which includes several data representation features such as tables,
graphs and mapping capabilities. Data access is configurable to allow or to restrict user groups and/or privileged users
to contribute or to download data. With these capabilities, Enhydris can be used either as a public repository of free
data or as a private system for data storage. Time series can be downloaded in plain text format that can be directly
loaded to Hydrognomon, a free tool for analysis and processing of meteorological time series.

Enhydris is free software, available under the GNU Affero General Public License, and can run on UNIX (such as
GNU/Linux) or Windows. Written in Python/Django, it can be installed on every operating system on which Python
runs, including GNU/Linux and Windows. It is free software, available under the GNU General Public License version
3 or any later version. It is being used by openmeteo.org, Hydrological Observatory of Athens, Hydroscope, the Athens
Water Supply Company, and WQ DREAMS.

Enhydris has several advanced features:

• It stores time series in a clever compressed text format in the database, resulting in using small space and high
speed retrieval. However, the first and last few records of each time series are stored uncompressed, which
means that the start and end date can be retrieved immediately, and appending a few records at the end can also
be done instantly.

• It can work in a distributed way. Many organisations can install one instance each, but an additional instance,
common to all organisations, can be setup as a common portal. This additional instance can be configured to
replicate data from the databases of the organisations, but without the space-consuming time series, which it
retrieves from the other databases on demand. A user can transparently use this portal to access the data of all
participating organisations collectively.

• It offers access to the data through a webservice API. This is the foundation on which the above distributing
features are based, but it can also be used so that other systems access the data.

• It has a security system that allows it to be used either in an organisational setting or in a public setting. In an
organisational setting, there are priviliged users who have write access to all the data. In a public setting, users
can subscribe, create stations, and add data for them, but they are not allowed to touch stations of other users.

• It is extensible. It is possible to create new Django applications which define geographical entity types besides
stations, and reuse existing Enhydris functionality.

3

http://hydrognomon.org/
http://openmeteo.org/
http://hoa.ntua.gr/
http://main.hydroscope.gr/
http://itia.ntua.gr/eydap/db/
http://itia.ntua.gr/eydap/db/
http://wq-dreams.eu/

Enhydris Documentation, Release b

1.2 Presentations, documents, papers

Enhydris, Filotis & openmeteo.org: Free software for environmental management, by A. Christofides, S. Kozanis, G.
Karavokiros, and A. Koukouvinos; FLOSS Conference 2011, Athens, 21 May 2011.

Enhydris: A free database system for the storage and management of hydrological and meteorological data, by A.
Christofides, S. Kozanis, G. Karavokiros, Y. Markonis, and A. Efstratiadis; European Geosciences Union General
Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 8760, 2011.

4 Chapter 1. About Enhydris

http://itia.ntua.gr/1145/
http://conferences.ellak.gr/2011/
http://itia.ntua.gr/1120/

CHAPTER 2

Installation and configuration

2.1 Download Enhydris

Download Enhydris from https://github.com/openmeteo/enhydris/ (if you are uncomfortable with git and github, click
on the “Download ZIP” button).

2.2 Prerequisites

Prerequisite Version
Python 2.6 [1]
PostgreSQL [2]
PostGIS 1.4 [3]
GDAL 1.9
psycopg2 2.2 [4]
setuptools 0.6 [5]
pip 1.1 [5]
PIL with freetype 1.1.7 [6]
Dickinson 0.1.0 [7]
The Python modules listed in requirements.txt See file

Note for production installations
These prerequisites are for development installations. For production installations you also need a web server.

[1] Enhydris runs on Python 2.6 and 2.7. It should also run on any later 2.x version. Enhydris does not run on Python
3.

[2] Enhydris should run on all supported PostgreSQL versions. In order to avoid possible incompatibilities with
psycopg2, it is better to use the version prepackaged by your operating system when running on GNU/Linux, and to
use the latest PostgreSQL version when running on Windows. If there is a problem with your version of PostgreSQL,
email us and we’ll check if it is easy to fix.

[3] Except for PostGIS, more libraries, namely geos and proj, are needed; however, you probably not need to worry
about that, because in most GNU/Linux distributions PostGIS has a dependency on them and therefore they will be
installed automatically, whereas in Windows the installation file of PostGIS includes them. Enhydris is known to run
on PostGIS 1.4 and 1.5. It probably can run on later versions as well. It is not known whether it can run on earlier
versions.

[4] psycopg2 is listed in requirements.txt together with the other Python modules. However, in contrast to
them, it can be tricky to install (because it needs compilation and has a dependency on PostgreSQL client libraries),

5

https://github.com/openmeteo/enhydris/

Enhydris Documentation, Release b

and it is therefore usually better to not leave its installation to pip. It’s better to install a prepackaged version for your
operating system.

[5] setuptools and pip are needed in order to install the rest of the Python modules; Enhydris does not actually need it.

[6] PIL is not directly required by Enhydris, but by other python modules required my Enhydris. In theory, installing
the requirements listed in requirements.txt will indirectly result in pip installing it. However, it can be tricky
to install, and it may be better to not leave its installation to pip; it’s better to install a prepackaged version for
your operating system. It must be compiled with libfreetype support. This is common in Linux distributions. In
Windows, however, the official packages are not thus compiled. One solution is to get the unofficial version from
http://www.lfd.uci.edu/~gohlke/pythonlibs/. If there is any difficulty, Pillow might work instead of PIL.

[7] Dickinson is not required directly by Enhydris, but by pthelma, which is required by Enhydris and is listed in
requirements.txt.

Example: Installing prerequisites on Debian/Ubuntu
These instructions are for Debian wheezy. For Ubuntu they are similar, except that the postgis package version may
be different:

aptitude install python postgresql postgis postgresql-9.1-postgis \
python-psycopg2 python-setuptools git python-pip python-imaging \
python-gdal

Install Dickinson
cd /tmp
wget https://github.com/openmeteo/dickinson/archive/0.1.0.tar.gz
tar xzf 0.1.0.tar.gz
cd dickinson-0.1.0
./configure
make
sudo make install

pip install -r requirements.txt

It is a good idea to use a virtualenv before running the last command, but you are on your own with that, sorry.

Example: Installing prerequisites on Windows

Important
We don’t support Enhydris very well on Windows. We do provide instructions, and we do fix bugs, but honestly we
can’t install it; we get an error message related to “geos” at some point. Some people have had success by installing
Enhydris using OSGeo4W, but we haven’t tried it. So, if you face installation problems, we won’t be able to help
(unless you provide funding).

Also note that we don’t think Enhydris on Windows can easily run on 64-bit Python or 64-bit PostgreSQL; the 32-bit
versions of everything should be installed. This is because some prerequisites are not available for Windows in 64-bit
versions, or they may be difficult to install. Such dependencies are PostGIS and some Python packages.

That said, we provide instructions below on how it should (in theory) be installed. If you choose to use OSGeo4W,
some things will be different - you are on your own anyway.

Download and install the latest Python 2.x version from http://python.org/ (use the Windows Installer package).

Add the Python installation directory (such as C:\Python27) and its Scripts subdirectory (such as
C:\Python27\Scripts) to the system path (right-click on My Computer, Properties, Advanced, Environment
variables, under “System variables” double-click on Path, and add the two new directory names at the end, using
semicolon to delimit them).

6 Chapter 2. Installation and configuration

http://www.pythonware.com/products/pil/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://dickinson.readthedocs.org/
http://pthelma.readthedocs.org/
http://osgeo4w.osgeo.org/
http://osgeo4w.osgeo.org/
http://python.org/

Enhydris Documentation, Release b

Download and install an appropriate PostgreSQL version from http://postgresql.org/ (use a binary Windows installer).
Important: at some time the installer will create an operating system user and ask you to define a password for that
user; keep the password; you will need it later.

Go to Start, All programs, PostgreSQL, Application Stack Builder, select your PostgreSQL installation on the first
screen, then, on the application selection screen, select Spatial Extensions, PostGIS. Allow it to install (you don’t need
to create a spatial database at this stage).

Download and install psycopg2 for Windows from http://www.stickpeople.com/projects/python/win-psycopg/.

Download and install setuptools from http://pypi.python.org/pypi/setuptools (you probably need to go to
http://pypi.python.org/pypi/setuptools#files and pick the .exe file that corresponds to your Python version).

Download and install PIL from http://www.lfd.uci.edu/~gohlke/pythonlibs/.

Download the latest dickinson DLL from http://openmeteo.org/downloads/ and put it in
C:\Windows\System32\dickinson.dll.

Finally, open a Command Prompt and give the following commands inside the downloaded and unpacked enhydris
directory:

easy_install pip
pip install -r requirements.txt

2.3 Creating a spatially enabled database

You need to create a database user and a spatially enabled database (we use enhydris_user and enhydris_db
in the examples below). Enhydris will be connecting to the database as that user. The user should not be a super user,
not be allowed to create databases, and not be allowed to create more users.

GNU example
First, you need to create a spatially enabled database template. For PostGIS 2.0 or later (for earlier version refer to the
GeoDjango instructions):

sudo -u postgres -s
createdb template_postgis
psql -d template_postgis -c "CREATE EXTENSION postgis;"
psql -d template_postgis -c \

"UPDATE pg_database SET datistemplate='true' \
WHERE datname='template_postgis';"

exit

The create the database:

sudo -u postgres -s
createuser --pwprompt enhydris_user
createdb --template template_postgis --owner enhydris_user \

enhydris_db
exit

You may also need to edit your pg_hba.conf file as needed (under /var/lib/pgsql/data/ or
/etc/postgresql/8.x/main/, depending on your system). The chapter on client authentication of the Post-
greSQL manual explains this in detail. A simple setup is to authenticate with username and password, in which case
you should add or modify the following lines in pg_hba.conf:

2.3. Creating a spatially enabled database 7

http://postgresql.org/
http://www.stickpeople.com/projects/python/win-psycopg/
http://pypi.python.org/pypi/setuptools
http://pypi.python.org/pypi/setuptools#files
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://openmeteo.org/downloads/
http://www.postgresql.org/docs/8.4/static/client-authentication.html

Enhydris Documentation, Release b

local all all md5
host all all 127.0.0.1/32 md5
host all all ::1/128 md5

Restart the server to read the new pg_hba.conf configuration. For example, in Ubuntu:

service postgresql restart

Windows example
Assuming PostgreSQL is installed at the default location, run these at a command prompt:

cd C:\Program Files\PostgreSQL\9.0\bin
createdb template_postgis
psql -d template_postgis -c "CREATE EXTENSION postgis;"
psql -d template_postgis -c "UPDATE pg_database SET datistemplate='true'

WHERE datname='template_postgis';"
createuser -U postgres --pwprompt enhydris_user
createdb --template template_postgis --owner enhydris_user enhydris_db

At some point, these commands will ask you for the password of the operating system user.

2.4 Configuring Enhydris

In the directory enhydris/settings, copy the file example.py to local.py. Open local.py in an editor
and make the following changes:

• Set ADMINS to a list of admins (the administrators will get all enhydris exceptions by mail and also all user
emails, as generated by the contact application).

• Under DATABASES, set NAME to the name of the database, and USER and PASSWORD according to the user
created above.

2.5 Initializing the database

In order to initialize your database and create the necessary database tables for Enhydris to run, run the following
commands inside the enhydris directory:

python manage.py syncdb --settings=enhydris.settings.local --noinput
python manage.py migrate --settings=enhydris.settings.local dbsync
python manage.py migrate --settings=enhydris.settings.local hcore
python manage.py createsuperuser --settings=enhydris.settings.local

The above commands will also ask you to create a Enhydris superuser.

Confused by users?
There are operating system users, database users, and Enhydris users. PostgreSQL runs as an operating system user,
and so does the web server, and so does Django and therefore Enhydris. Now the application (i.e. Enhydris/Django)
needs a database connection to work, and for this connection it connects to the database as a database user. For the end
users, that is, for the actual people who use Enhydris, Enhydris/Django keeps a list of usernames and passwords in the
database, which have nothing to do with operating system users or database users. The Enhydris superuser created by
the ./manage.py createsuperuser command is such an Enhydris user, and is intended to represent a human.

8 Chapter 2. Installation and configuration

Enhydris Documentation, Release b

Advanced Django administrators can also use alternative authentication backends, such as LDAP, for storing the
Enhydris users.

2.6 Running Enhydris

Inside the openmeteo/enhydris directory, run the following command:

python manage.py runserver --settings=enhydris.settings.local 8088

The above command will start the Django development server and set it to listen to port 8088. If you then start your
browser and point it to http://localhost:8088/, you should see Enhydris in action. Note that this only listens
to the localhost; if you want it to listen on all interfaces, use 0.0.0.0:8088 instead.

To use Enhydris in production, you need to setup a web server such as apache. This is described in detail in Deploying
Django.

2.7 Post-install configuration

2.7.1 Domain name

After you run Enhydris, logon as a superuser, visit the admin panel, go to Sites, edit the default site, and enter your
domain name there instead of example.com. Emails to users for registration confirmation will appear to be coming
from that domain. Restart the webserver after changing the domain name.

2.8 Settings reference

These are the settings available to Enhydris, in addition to the Django settings.

ENHYDRIS_FILTER_DEFAULT_COUNTRY
When a default country is specified, the station search is locked within that country and the station search filter
allows only searches in the selected country. If left blank, the filter allows all countries to be included in the
search.

ENHYDRIS_FILTER_POLITICAL_SUBDIVISION1_NAME

ENHYDRIS_FILTER_POLITICAL_SUBDIVISION2_NAME
These are used only if FILTER_DEFAULT_COUNTRY is set. They are the names of the first and the second
level of political subdivision in a certain country. For example, Greece is first divided in ‘districts’, then in
‘prefecture’, whereas the USA is first divided in ‘states’, then in ‘counties’.

ENHYDRIS_USERS_CAN_ADD_CONTENT
This must be configured before syncing the database. If set to True, it enables all logged in users to add content
to the site (stations, instruments and timeseries). It enables the use of user space forms which are available to all
registered users and also allows editing existing data. When set to False (the default), only privileged users
are allowed to add/edit/remove data from the db.

ENHYDRIS_SITE_CONTENT_IS_FREE
If this is set to True, all registered users have access to the timeseries and can download timeseries data. If set
to False (the default), the users may be restricted.

2.6. Running Enhydris 9

http://docs.djangoproject.com/en/1.1/topics/auth/#other-authentication-sources
http://docs.djangoproject.com/en/1.5/howto/deployment/
http://docs.djangoproject.com/en/1.5/howto/deployment/
http://docs.djangoproject.com/en/1.5/ref/settings/

Enhydris Documentation, Release b

ENHYDRIS_TSDATA_AVAILABLE_FOR_ANONYMOUS_USERS
Setting this option to True will enable all users to download timeseries data without having to login first. The
default is False.

ENHYDRIS_STORE_TSDATA_LOCALLY
Deprecated.

By default, this is True. If set to False, the installation does not store the actual time series records.
The purpose of this setting is to be used together with the dbsync application, in order to create a website
that contains the collected data (except time series records) of several other Enhydris installations (see the
hcore_remotesyncdb management command). However, all this is under reconsideration.

ENHYDRIS_REMOTE_INSTANCE_CREDENTIALS
If the instance is configured as a data aggregator and doesn’t have the actual data locally stored, in order to fetch
the data from another instance a user name and password must be provided which correspond to a superuser
account in the remote instance. Many instances can be configured using this setting, each with its own user/pass
combination following this scheme:

ENHYDRIS_REMOTE_INSTANCE_CREDENTIALS = {
'kyy.hydroscope.gr': ('myusername','mypassword'),
'itia.hydroscope.gr': ('anotheruser','anotherpass')

}

ENHYDRIS_USE_OPEN_LAYERS
Set this to False to disable the map.

ENHYDRIS_MIN_VIEWPORT_IN_DEGS
Set a value in degrees. When a geographical query has bounds with dimensions less than
MIN_VIEWPORT_IN_DEGS, the map will have at least a dimension of MIN_VIEWPORT_IN_DEGS². Useful
when showing a single entity, such as a hydrometeorological station. Default value is 0.04, corresponding to an
area approximately 4×4 km.

ENHYDRIS_MAP_DEFAULT_VIEWPORT
A tuple containing the default viewport for the map in geographical coordinates, in cases of geographical queries
that do not return anything. Format is (minlon, minlat, maxlon, maxlat) where lon and lat is in decimal degrees,
positive for north/east, negative for west/south.

ENHYDRIS_TS_GRAPH_CACHE_DIR
The directory in which timeseries graphs are cached. It is automatically created if it does not exist. The default
is subdirectory enhydris-timeseries-graphs of the system or user temporary directory.

ENHYDRIS_TS_GRAPH_BIG_STEP_DENOMINATOR
ENHYDRIS_TS_GRAPH_FINE_STEP_DENOMINATOR

Chart options for time series details page. The big step represents the max num of data points to be plotted,
default is 200. The fine step are the max num of points between main data points to search for a maxima, default
is 50.

ENHYDRIS_SITE_STATION_FILTER
This is a quick-and-dirty way to create a web site that only displays a subset of an Enhydris database. For
example, the database of http://deucalionproject.gr/db/ is the same as that of http://openmeteo.org/db/; however,
the former only shows stations relevant to the Deucalion project, because it has this setting:

ENHYDRIS_SITE_STATION_FILTER = {'owner__id__exact': '9'}

ENHYDRIS_DISPLAY_COPYRIGHT_INFO
If True, the station detail page shows copyright information for the station. By default, it is False. If all the
stations in the database belong to one organization, you probably want to leave it to False. If the database
is going to be openly accessed and contains data that belongs to many owners, you probably want to set it to
True.

10 Chapter 2. Installation and configuration

http://deucalionproject.gr/db/
http://openmeteo.org/db/

Enhydris Documentation, Release b

ENHYDRIS_WGS84_NAME
Sometimes Enhydris displays the reference system of the co-ordinates, which is always WGS84. In some in-
stallations, it is desirable to show something other than “WGS84”, such as “ETRS89”. This parameter specifies
the name that will be displayed; the default is WGS84.

This is merely a cosmetic issue, which does not affect the actual reference system used, which is always WGS84.
The purpose of this parameter is merely to enable installations in Europe to display “ETRS89” instead of
“WGS84” whenever this is preferred. Given that the difference between WGS84 and ETRS89 is only a few
centimeters, which is considerably less that the accuracy with which station co-ordinates are given, whether
WGS84 or ETRS89 is displayed is actually irrelevant.

2.8. Settings reference 11

Enhydris Documentation, Release b

12 Chapter 2. Installation and configuration

CHAPTER 3

Copyright and credits

Enhydris is

Copyright (C) 2005-2011 National Technical University of Athens

Enhydris is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public
License, as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later
version.

The software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the licenses for
more details.

You should have received a copy of the license along with this program. If not, see http://www.gnu.org/licenses/.

The database of Enhydris was originally written by Antonis Christofides of the National Technical University of
Athens. The rest of Enhydris was originally developed by Andreas Loupasakis and Seraphim Mellos of Indifex.

Enhydris was funded by the Ministry of Environment of Greece as part of the Hydroscope project.

Reference:

13

http://www.gnu.org/licenses/
http://indifex.com/
http://hydroscope.gr/

Enhydris Documentation, Release b

14 Chapter 3. Copyright and credits

CHAPTER 4

The database

4.1 Main principles

The Enhydris database is implemented in PostgreSQL. While the implementation of the database is through Django’s
object-relational mapper, which is more or less RDBMS-independent, Enhydris uses PostgreSQL’s geographic fea-
tures, so it is not portable. It also uses some custom PostgreSQL code for storing timeseries (however this is likely to
change in the future).

In Django parlance, a model is a type of entity, which usually maps to a single database table. Therefore, in Django,
we usually talk of models rather than of database tables, and we design models, which is close to a conceptual database
design, leaving it to Django’s object-relational mapper to translate to the physical. In this text, we also speak more
of models than of tables. Since a model is a Python class, we describe it as a Python class rather than as a relational
database table. If, however, you feel more comfortable with tables, you can generally read the text understanding that
a model is a table.

If you are interested in the physical structure of the database, you need to know the model translation rules, which are
quite simple:

• The name of the table is the lower case name of the model, with a prefix. The prefix for the core of the database
is hcore_. (More on the prefix below).

• Tables normally have an implicit integer id field, which is the primary key of the table.

• Table fields have the same name as model attributes, except for foreign keys.

• Foreign keys have the name of the model attribute suffixed with _id.

• When using multi-table inheritance, the primary key of the child table is also a foreign key to the id field of the
parent table. The name of the database column for the key of the child table is the lower cased parent model
name suffixed with _ptr_id.

There are two drawings that accompany this text: the drawing for the conceptual data model, and the drawing
for the physical data model. You should avoid looking at the physical data model; it is cluttered and confusing,
since it is machine-generated. It is only provided for the benefit of those who are not comfortable with Django’s object-
relational mapping. However, it is best to learn to read the conceptual data model; if you become acquainted with the
Django’s object-relational mapping rules listed above, you will be able to write SQL commands effortlessly, by using
these rules in your head. The drawing of the physical data model is also far more likely to contain errors or to be
outdated than the drawing and documentation for the conceptual data model.

The core of the Enhydris database is a list of measuring stations, with additional information such as instruments,
photos, videos, and so on, and the hydrological and meteorological time series stored for each measuring station. This
can be used in or assisted by many more applications, which may or may not be needed in each setup. A billing
system is needed for agencies that charge for their data, but not for those who offer them freely or only internally.
Some organisations may need to develop additional software for managing aqueducts, and some may not. Therefore,

15

http://docs.djangoproject.com/en/dev/topics/db/models/#id6

Enhydris Documentation, Release b

the core is kept as simple as possible. The core database tables use the hcore_ prefix. Other applications use another
prefix. The name of a table is the lowercased model name preceeded by the prefix. For example, the table that
corresponds to the Gentity model is hcore_gentity.

Multilinguality
Originally, the database was designed in order to be multilingual, that is, so that the content could be stored in an
unlimited number of languages. The django-multilingual framework was used for this purpose. However, django-
multilingual bugs slowed development too much, and it was decided to go for a more modest solution: texts are
simply stored in two languages: the local language and the alternative language. For example, for a description, there
are the “descr” field and the “descr_alt” field. Which languages are “descr” and “descr_alt” depends on the installation.
For example, we use Greek as the local language and English as the alternative language.

We hope to get rid of this, but this will involve fixing django-multilingual or using another multilingual framework.

When any field in the API is marked as being multilingual, it means that it is accompanied by an additional identical
field that has “_alt” appended to its name. (It also means that, instead, it should be defined in a Translation class
nested in the model class, as would be the case if django-multilingual were used.)

4.2 Lookup tables

Lookup tables are those that are used for enumerated values. For example, the list of variables is a lookup table. Most
lookup tables in the Enhydris database have three fields: id, descr, and short_descr, and they all inherit the following
abstract base class:

class enhydris.hcore.models.Lookup
This class contains the common attribute of the lookup tables:

descr

A multilingual character field with a descriptive name.

Most lookup tables are described in a relevant section of this document, where their description fits better; for example,
StationType is described at Section Station and its related models.

4.3 Lentities

The Lentity is the superclass of people and groups. For example, a measuring station can belong either to an organisa-
tion or an individual. Lawyers use the word “entity” to refer to individuals and organisations together, but this would
create confusion because of the more generic meaning of “entity” in computing; therefore, we use “lentity”, which is
something like a legal entity. The lentity hierarchy is implemented by using Django’s multi-table inheritance.

class enhydris.hcore.models.Lentity

remarks
A multilingual text field of unlimited length.

class enhydris.hcore.models.Person

last_name

first_name

middle_names

16 Chapter 4. The database

http://code.google.com/p/django-multilingual/
http://code.google.com/p/django-multilingual/
http://docs.djangoproject.com/en/dev/topics/db/models/#id5
http://docs.djangoproject.com/en/dev/topics/db/models/#id6

Enhydris Documentation, Release b

initials
The above four are all multilingual character fields. The initials contain the initials without the last
name. For example, for Antonis Michael Christofides, initials would contain the value “A. M.”.

class enhydris.hcore.models.Organization

name

acronym
name and acronym are both multilingual character fields.

4.4 Gentity and its direct descendants: Gpoint, Gline, Garea

A Gentity is a geographical entity. Examples of gentities (short for geographical entities) are measuring stations, cities,
boreholes and watersheds. A gentity can be a point (e.g. stations and boreholes), a surface (e.g. lakes and watersheds),
a line (e.g. aqueducts), or a network (e.g. a river). The gentities implemented in the core are measuring stations and
water basins. The gentity hierarchy is implemented by using Django’s multi-table inheritance.

class enhydris.hcore.models.Gentity

name
A multilingual field with the name of the gentity, such as the name of a measuring station. Up to 200
characters.

short_name
A multilingual field with a short name of the gentity. Up to 50 characters.

remarks
A multilingual field with general remarks about the gentity. Unlimited length.

water_basin
The water basin where the gentity is.

water_division
The water division in which the gentity is. Foreign key to WaterDivision.

political_division
The country or other political division in which the gentity is. Foreign key to PoliticalDivision.

class enhydris.hcore.models.Gpoint(Gentity)

point
This is a GeoDjango PointField that stores the 2-d location of the point.

srid
Specifies the reference system in which the user originally entered the co-ordinates
of the point. Valid srid‘s are registered at http://www.epsg-registry.org/. See also
http://itia.ntua.gr/antonis/technical/coordinate-systems/.

approximate
This boolean field has the value True if the horizontal co-ordinates are approximate. This normally
means that the user who specified the co-ordinates did not really know the location of the point, but for
convenience placed it somewhere visually so that the GIS system can have a rough idea of where to show
it and e.g. in which basin it is.

altitude

4.4. Gentity and its direct descendants: Gpoint, Gline, Garea 17

http://docs.djangoproject.com/en/dev/topics/db/models/#id6
http://docs.djangoproject.com/en/1.2/ref/contrib/gis/model-api/
http://www.epsg-registry.org/
http://itia.ntua.gr/antonis/technical/coordinate-systems/

Enhydris Documentation, Release b

asrid
These attributes store the altitude. asrid specifies the reference system, which defines how altitude is to be
understood. asrid can be empty, in which case, altitude is given in metres above mean sea level.

class enhydris.hcore.models.Gline(Gentity)

gpoint1

gpoint2
The starting and ending points of the line; foreign keys to Gpoint.

length
The length of the line in meters.

class enhydris.hcore.models.Garea(Gentity)

area
The size of the area in square meters.

4.5 Additional information for generic gentities

This section describes models that provide additional information about gentities.

class enhydris.hcore.models.PoliticalDivision(Garea)
From an administrative point of view, the world is divided into countries. Each country is then divided into
further divisions, which may be called states, districts, counties, provinces, prefectures, and so on, which may
be further subdivided. Greece, for example, is divided in districts, which are subdivided in prefectures. How
these divisions and subdivisions are named, and the way and depth of subdividing, differs from country to
country.

PoliticalDivision is a recursive model that represents such political divisions. The top-level political
division is a country, and lower levels differ from country to country.

parent
For top-level political divisions, that is, countries, this attribute is null; otherwise, it points to the containing
political division.

code
For top-level political divisions, that is, countries, this is the two-character ISO 3166 country code. For
lower level political divisions, it can be a country-specific division code; for example, for US states, it can
be the two-character state code. Up to five characters.

class enhydris.hcore.models.WaterDivision(Garea)
A water division is a collection of basins. Water divisions may be used for administrative purposes, each water
division being under the authority of one organisation or organisational division. Usually a water division
consists of adjacent basins or of nearby islands or both.

class enhydris.hcore.models.WaterBasin(Garea)
A water basin.

parent
If this is a subbasin, this field points to the containing water basin.

water_division
The water district in which the water basin is.

class enhydris.hcore.models.GentityAltCodeType(Lookup)
The different kinds of codes that a gentity may have; see GentityAltCode for more information.

18 Chapter 4. The database

Enhydris Documentation, Release b

class enhydris.hcore.models.GentityAltCode
While each gentity is automatically given an id by the system, some stations may also have alternative codes.
For example, in Greece, if a database contains a measuring station that is owned by a specific organisation, the
station has the id given to it by the database, but in addition it may have a code assigned by the organisation;
some also have a code created by older inter-organisational efforts to create a unique list of stations in Greece;
and some also have a WMO code. This model therefore stores alternative codes.

gentity
A foreign key to Gentity .

type
The type of alternative code; one of those listed in GentityAltCodeType.

value
A character field with the actual code.

class enhydris.hcore.models.FileType(Lookup)
A lookup that contains one additional field:

mime_type
The mime type, like image/jpeg.

class enhydris.hcore.models.GentityFile
This model stores general files for the gentity. For examples, for measuring stations, it can be photos, videos,
sensor manuals, etc.

descr
A multilingual short description or legend of the file.

remarks
Multilingual remarks of unlimited length.

date
For photos, it should be the date the photo was taken. For other kinds of files, it can be any kind of date.

file_type
The type of the file; a foreign key to FileType.

content
The actual content of the file; a Django FileField. Note that, for generality, images are also stored in this
attribute, and therefore they don’t use an ImageField, which means that the few facilities that ImageField
offers are not available.

class enhydris.hcore.models.EventType(Lookup)
Stores types of events.

class enhydris.hcore.models.GentityEvent
An event is something that happens during the lifetime of a gentity and needs to be recorded. For example,
for measuring stations, events such as malfunctions, maintenance sessions, and extreme weather phenomena
observations can be recorded and provide a kind of log.

gentity
The Gentity to which the event refers.

date
The date of the event.

type
The EventType.

user
The username of the user who entered the event to the database.

4.5. Additional information for generic gentities 19

http://docs.djangoprojects.com/en/dev/ref/models/fields/#filefield
http://docs.djangoprojects.com/en/dev/ref/models/fields/#imagefield

Enhydris Documentation, Release b

report
A report about the event; a text field of unlimited length.

4.6 Station and its related models

class enhydris.hcore.models.StationType(Lookup)
The station type, such as “meteorological” or “stage measuring”.

class enhydris.hcore.models.Station(Gpoint)

owner
The Lentity that owns the station.

type
The StationType.

is_active
A boolean field showing whether the station is operating.

is_automatic
A boolean field showing whether the station is automatic.

start_date

end_date
An optional pair of dates indicating when the station started and stopped working.

overseers
The overseers are the persons who are or have been responsible for each meteorological station in the past.
In the case of traditional (not automatic) stations, this means the weather observers. At a given time, each
station has only one observer. This is a many-to-many field, through model Overseer.

class enhydris.hcore.models.Overseer

station
A foreign key to Station.

person
A foreign key to Person.

is_current
A boolean value indicating whether this person is the current observer. For current overseers, the
end_date below must be null; however, a null end_date could also mean that the end_date is unknown,
not necessarily that the overseer is the current overseer.

start_date

end_date

class enhydris.hcore.models.InstrumentType(Lookup)
The instrument type, such as “Thermometer”.

class enhydris.hcore.models.Instrument
A measuring instrument or sensor that belongs to a station.

station
The Station to which the instrument belongs.

20 Chapter 4. The database

Enhydris Documentation, Release b

type
The InstrumentType.

name
A multilingual field with a descriptive name.

remarks
A multilingual field with remarks of unlimited length.

manufacturer
The name of the manufacturer. For simplicity, this is not a foreign key to Organization; this would be
overkill.

model
The model name.

is_active
A boolean indicating whether the instrument is operative.

start_date

end_date
The dates of start and end of operation.

4.7 Time series and related models

class enhydris.hcore.models.Variable(Lookup)
This model stores a variable, such as “precipitation”, “evaporation”, “temperature” etc.

class enhydris.hcore.models.UnitOfMeasurement(Lookup)
This model stores a unit of measurement. In addition to Lookup fields, it has the following additional fields:

symbol
The symbol used for the unit, in UTF-8 plain text.

variables
A many-to-many relationship to Variable.

class enhydris.hcore.models.TimeZone
This model stores time zones.

code
The code name of the time zone, such as CET or UTC.

utc_offset
A number, in minutes, with the offset of the time zone from UTC. For example, CET has a utc_offset
of 60, whereas CDT is -300. This model only stores time zones with a constant utc offset, and not time
zones with variable offsets. For example, we don’t store CT (North American Central Time), because this
is different in summer and in winter; instead, we store CST (Central Standard Time) and CDT (Central
Daylight Time), which are the two occurrences of CT. The time stamps of a given time series may not
observe summer time; they must always have the same utc offset throught the time series.

class enhydris.hcore.models.TimeStep(Lookup)
This model holds time steps. The descr attribute inherited by Lookup holds a descriptive name for the time
step, such as “daily” or “monthly”. The model has two additional attributes:

length_minutes

4.7. Time series and related models 21

Enhydris Documentation, Release b

length_months
One of these two attributes must be zero. For example, a daily time step has length_minutes=1440 and
length_months=0; an annual time step has length_minutes=0 and length_months=12.

class enhydris.hcore.models.Timeseries
This model holds information, but not the actual data, of a time series.

gentity
The Gentity to which the time series refers.

variable
The Variable of the time series.

unit_of_measurement
The UnitOfMeasurement.

name
A descriptive name for the time series.

precision
An integer specifying the precision of the values of the time series, in number of decimal digits. It can be
negative; for example, a precision of -2 indicates that the values are accurate to the hundred, ex. 100, 200
etc.

time_zone
The TimeZone in which the time series’ timestamps are.

remarks
A text field of unlimited length.

instrument
The instrument that measured the time series; a foreign key to Instrument. This can be null, as there are
time series that are not measured by instruments, as are, for example, time series resulting from processing
of other time series.

hidden
A boolean field to control the visibility of timeseries in related pages.

The rest of the attributes of the Timeseries model describe the time step and they are several:

time_step
nominal_offset_minutes
nominal_offset_months
actual_offset_minutes
actual_offset_months

The time_step is a foreign key to TimeStep. Some time series are completely irregular; in that
case, time_step (and all other time step related attributes) is null. Otherwise, it contains an appropri-
ate time step. For an explanation of the other four attributes, see the timeseries.TimeStep class.
actual_offset_minutes and actual_offset_months must always be present if the time step
is not null. The nominal offset attributes may, however, be null, if the time series is not strict, that is, if
it does have a time step, but that time step contains irregularities. As an example, a time series measured
by an automatic meteorological station every ten minutes will usually have a nominal offset of 0 minutes,
which means the timestamps will end in :10, :20, :30, etc; but a clock error or a setup error could result in
the timestamps ending in :11, :21, :31 for a brief period of time. In that case, we say that the time series
has a nonstrict time step of 10 minutes, which means it has no specific nominal offset.

The time series records are stored in the ts_records table, the format of which is documented in pthelma. Al-
though this table corresponds to a Django model, the existence of that model (which is a bit hacked and can run
only on PostgreSQL) is only a means to create the table. The Django model should never be used to access the ta-
ble; instead, the pthelma.timeseries.Timeseries methods read_from_db(), write_to_db(), and

22 Chapter 4. The database

http://pthelma.readthedocs.org/en/latest/timeseries.html#database-format

Enhydris Documentation, Release b

append_to_db(), should be used. (It is also likely that these internals will change in the future, and the time series
records will be stored by a Django FileField in the Timeseries table.

4.7. Time series and related models 23

Enhydris Documentation, Release b

24 Chapter 4. The database

CHAPTER 5

Webservice API

5.1 Overview

Normally the web pages of Enhydris are good if you are a human; but if you are a computer (a script that creates sta-
tions, for example), then you need a different interface. For that purpose, Enydris offers an API through HTTP, through
which applications can communicate. For example, http://openmeteo.org/stations/d/1334/ shows you a weather station
in human-readable format; http://openmeteo.org/api/Station/1334/ provides you data on the same station in machine-
readable format.

Important
The Webservice API might change heavily in the future. If you make any use of the API, it is very important that you
stay in touch with us so that we take into account your backwards compatibility needs. Otherwise your applications
might stop working one day.

The Webservice API is a work in progress: it was originally designed in order to provide the ability to replicate the
data from one instance to another over the network. It was later extended to provide the possibility to create timeseries
through a script. New functions are added to it as needed.

5.2 Client authentication

Some of the API functions are provided freely, while others require authentication. An example of the latter are
functions which alter data; another example is data which are protected and need, for example, a subscription in order
to be accessed. In such cases of restricted access, HTTP Basic authentication is performed.

Note: Using HTTP Basic Authentication with apache and mod_wsgi requires you to add the
WSGIPassAuthorization On directive to the server or vhost config, otherwise the application cannot read the
authentication data from HTTP_AUTHORIZATION in request.META. See: WSGI+BASIC_AUTH.

5.3 Generic API calls

API calls are accessible under the /api/ url after which you just fill in the model name of the
model you want to request. For example, to request all the stations you must provide the url
http://base-address/api/Station/; the format in which the data will be returned depends on the HTTP
Accept header. The same goes for the rest of the enhydris models (e.g. /api/Garea/, /api/Gentity/

25

http://openmeteo.org/stations/d/1334/
http://openmeteo.org/api/Station/1334/
http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIPassAuthorization.

Enhydris Documentation, Release b

etc). There is also the ability to request only one object of a specific type by appending its id in the url like this:
http://base-address/api/Station/1000/.

See the data model reference for information on the models.

5.4 Creating new time series and stations

To create a new time series, you POST /api/Timeseries/; you must pass an appropriate csrf_token and a session
id (you must be logged on as a user who has permission to do this), and pass the data in an appropriate format, such as
JSON. Likewise, you can create new stations by POSTing /api/Station/; you can also delete stations and time
series, and you can edit stations.

If you program in Python, you should use Pthelma’s enhydris_api module. Otherwise, you should read its code to see
more concrete examples of how to use the API.

5.5 Appending data to a time series

To append data to a time series, you PUT api/tsdata. See the code of loggertodb for an example of how to do this.

5.6 Timeseries data and GentityFile

At http://base-address/api/tsdata/id/ (where id is the actual id of the timeseries object) you can get
the timeseries data in text format.

Backwards-compatibility
The API implementation was changed in several changesets, starting with 639e4c810457. Before that, django-piston
was being used for the api; it was changed to django-rest-framework.

Not all API features have been reimplemented. Notably, piston’s output could be used with Django’s loaddata man-
agement command to load data to an empty instance; this is no longer possible, because the returned objects do not
contain a “model” attribute.

Furthermore, there was also the possibility to get gentity files at http://base-address/api/gfdata/id‘ (where id was the
actual id of the GentityFile object). Finally, there was the “station information and lists” feature, documented below:

(Temporarily?) obsolete documentation on station information and lists

There are also some more calls which provide station details in a more human readable format, including a station’s
geodata which may be used by 3rd party application to incorporate the displaying of enhydris stations in their maps.
These API calls reside under the /api/Station/info/ url and are similar to the ones above. If you do not specify
any additional parameters, you get information for all Stations hosted in Enhydris and if you want the details for a
specific station, you just need to append its id to the end of the url like above (eg /api/Station/info/1000).
See models.Gentity and models.Station for a description of the meaning of the fields.

There is also another feature which enables users to request a sublist of stations by providing the station ids in a
comma separated list by using the /api/Station/info/list url. This call supports only the POST method and
the comma separated list must be given under the varible name station_list. For example:

curl -X POST -d "station_list=10001,10002,10003" http://openmeteo.org/db/api/Station/info/list/

26 Chapter 5. Webservice API

http://pthelma.readthedocs.org/en/latest/enhydris_api.html
http://pthelma.readthedocs.org/en/latest/timeseries.html#text-format
https://bitbucket.org/jespern/django-piston/
http://django-rest-framework.org/

Enhydris Documentation, Release b

5.7 Cached time series data

At http://base-address/timeseries/data/?object_id=id (where id is the actual id of the time
series object) you can get some time series data from specific positions (timestamps) as well as statistics and chart
data. Data is cached so no need to read the entire time series and usually information is delivered fast.

Cached time series data are being used to display time series previews in time series detail pages. Also there are used
for charting like in:

http://openmeteo.org/db/chart/ntuastation/

The response is a JSON object. An example is the following:

{
"stats": {"min_tstmp": 1353316200000,

"max": 6.0,
"max_tstmp": 979495200000,
"avg": 0.0094982613015400109,
"vavg": null,
"count": 10065,
"last_tstmp": 1353316200000,
"last": 0.0,
"min": 0.0,
"sum": 95.600000000000207,
"vectors": [0, 0, 0, 0, 0, 0, 0, 0],
"vsum": [0.0, 0.0]},

"data": [[911218200000, "0.0", 1],
[913349400000, "4.8", 3551],
...,
[1350248400000, "0.0", 710001],
[1353316200000, "0.0", 715149]]

}

“stats” An object holding statistics for the given interval (see bellow)

“last” Last value observed for the given interval

“last_tstmp” The timestamp for the last value

“max” Is the maximum value observed for the given interval (see bellow)

“max_tstmp” The timestamp where the maximum value is observed

“min” The minimum value for the given interval

“min_tstmp” The timestamp where minimum value is observed

“avg” The average value for the given interval

“vavg” A vector average in decimal degrees for vector variables such as wind direction etc.

“count” The actual number of records used for statistics

“sum” The sum of values for the given interval

“vsum” Two components of sum (vector sum) Sx, Sy, computed by the cosines, sinus.

“vectors” The percentage of vector variable for eight distinct directions (N, NE, E, SE, S, SW, W and NW).

“data” An object holding an array of charting values. Each item of the array holds [timestamp, value, index]. Times-
tamp is a javascript timestamp, value if a floating point number or null, index is the actual index of the value in
the whole time series records.

5.7. Cached time series data 27

http://openmeteo.org/db/chart/ntuastation/

Enhydris Documentation, Release b

You have to specify at least the object_id GET parameter in order to obtain some data. The default time interval is
the whole time series. In the case of the whole time series a rough image of the time series is displayed which is not
precise. Statistics also can be no precise.

In example for 10-minute time step time series, chart and statistics can be precise for intervals of one month the most.

Besides object_id some other parameters can be given as GET parameters to specify the desired interval etc:

start_pos an index number specifying the begining of an interval. Index can be zero (0) for the begining of the time
series or at most last record number minus one.

end_pos an index number specifying the end of an interval.

last

A string defining an interval from a pre-defined set:

• day

• week

• month

• year

• moment (returns one value only for the last moment)

• hour

• twohour

By default the end of the interval is the end of the time series. If time-series is auto-updated it shows the last
measurements.

date Can be used in conjuction with the last parameter to display in interval beginning at the specified date. Date
format: yyyy-mm-dd

time Can be used in conjuction with last and date parameters to specify the beginning time of the interval. Accepted
format: HH:MM

exact_datetime A boolean parameter (set to true to activate). Specifies that date times should be existing in time series
record or else it returns null. If not activated, it returns the closest periods with data to the specified interval.

start_offset An offset in minutes for the beginning of the interval. It can be used i.e. to exclude the first value of a
daily interval, so the statistics are computed correct i.e. from 144 10-min values rather than 145 values (e.g.
from 00:10 to 24:00 rather than 00:00 to 24:00). Suggested value for a ten minute time series is 10

vector A boolean parameter. Set to ‘true’ to activate. Then vector statistics are being calculated.

jsoncallback=? If you’re running into the Same Origin Policy, which doesn’t (normally) allow ajax requests to cross
origins you should add the GET parameter above to obtain the cached time series data set.

A full example to get some daily values for a time series:

https://openmeteo.org/db/timeseries/data/?object_id=230&last=day&exact_datetime=true&date=2012-
11-01&time=00:00

Contributed applications:

28 Chapter 5. Webservice API

https://openmeteo.org/db/timeseries/data/?object_id=230&last=day&exact_datetime=true&date=2012-11-01&time=00:00
https://openmeteo.org/db/timeseries/data/?object_id=230&last=day&exact_datetime=true&date=2012-11-01&time=00:00

CHAPTER 6

dbsync — Database Syncing

The dbsync module implements the database replication and synchronization features. The core part of this module is
the syncdb management command which takes care of fetching and installing remote objects from JSON files using
the Webservice API.

Note
The dbsync application is currently barely working and should be rewritten.

6.1 DBSync Objects

Each instance of the Database class represents a remote enhydris instance. Once such an object has been added to
the local database, then the remote instance it refers to can be used in the replication routine.

class dbsync.Database(name, ip_address, hostname, descr)

name
This is the name of the database. It’s not mandatory that it’s the same to the actual name of the database.
This is only used for local reference.

ip_address
This field should contain the ip of the host that holds the remote enhydris instance.

hostname
This field must contain the FQDN from which the enhydris instance is accessible (this is especially required
when using vhosts on a server so that the replication script knows which vhost uses which database).

Note: A fully qualified domain name (FQDN), sometimes referred to as an absolute domain name, is a
domain name that specifies its exact location in the tree hierarchy of the Domain Name System (DNS). It
specifies all domain levels, including the top-level domain, relative to the root domain. A fully qualified
domain name is distinguished by this absoluteness in the name space.

descr
This is a textfield that holds the description for the specific database.

29

Enhydris Documentation, Release b

6.2 DBSync Management Command

The core functionality of the DBSync module is to provide a management command with which one can replicate
completely a remote instance (or multiple remote instances) of the enhydris web application. The replication script
can also update existing entries with changes when run multiple consecutive times but doesn’t handle item deletion.

The code for the replication scripts resides under the enhydris/dbsync/management/commands/ directory,
inside the hcore_remotesyncdb.py file. You can check out the available options for the script by issuing the
following command:

./manage.py hcore_remotesyncdb -h

Usage: ./manage.py hcore_remotesyncdb [options]

This command is used to synchronize the local database using data from a
remote instance

Options:
-v VERBOSITY, --verbosity=VERBOSITY

Verbosity level; 0=minimal output, 1=normal output,
2=all output

--settings=SETTINGS The Python path to a settings module, e.g.
"myproject.settings.main". If this isn't provided, the
DJANGO_SETTINGS_MODULE environment variable will be
used.

--pythonpath=PYTHONPATH
A directory to add to the Python path, e.g.
"/home/djangoprojects/myproject".

--traceback Print traceback on exception
-r REMOTE, --remote=REMOTE

Remote instance to sync from
-p PORT, --port=PORT Specify custom port. Default is 80.
-a APP, --app=APP Application which should be synced
-e EXCLUDE, --exclude=EXCLUDE

State which models of the apps you want excluded from
the sync

-f, --fetch-only Doesn't actually submit any changes, just fetches
remote dumps and saves them locally.

-w CWD, --work-dir=CWD
Define the tmp dir in which all temporary files will
be stored

-N, --no-backups Default behaviour is to take a backup of the local db
before doing any changes. This overrides this
behavior.

-s, --skip If skip is specified, then syncing will skip any
problems continue execution. Default behavior is to
halt on all errors.

-R, --resume With resume, no files are fetched but the local ones
are used.

-S, --silent Suppress all log messages
--version show program's version number and exit
-h, --help show this help message and exit

The most important command line options are the -a and -r which are used to specify which application you want
to replicate (in our case hcore) and which is the remote instance from which the data should be pulled. A sample
execution of the replication script from the command line should look something like this:

30 Chapter 6. dbsync — Database Syncing

Enhydris Documentation, Release b

./manage.py hcore_remotesyncdb -a hcore -r itia.hydroscope.gr -e UserProfile
/usr/local/lib/python2.6/dist-packages/django_registration-0.7-py2.6.egg/registration/models.py:4:
DeprecationWarning: the sha module is deprecated; use the hashlib module instead
Checking port availability on host 147.102.160.28, port 80
Remote host is up. Continuing with the sync.
The following models will be synced: ['EventType', 'FileType', 'Garea',
'Gentity', 'GentityAltCode', 'GentityAltCodeType', 'GentityEvent',
'GentityFile', 'Gline', 'Gpoint', 'Instrument', 'InstrumentType', 'Lentity',
'Organization', 'Overseer', 'Person', 'PoliticalDivision', 'Station',
'StationType', 'TimeStep', 'TimeZone', 'Timeseries', 'UnitOfMeasurement',
'Variable', 'WaterBasin', 'WaterDivision']
The following models will be excluded ['UserProfile']
Syncing model EventType

- Downloading EventType fixtures : done
Syncing model FileType

- Downloading FileType fixtures : done
Syncing model Garea

- Downloading Garea fixtures : done
Syncing model Gentity

- Downloading Gentity fixtures : done
Syncing model GentityAltCode

- Downloading GentityAltCode fixtures : done
Syncing model GentityAltCodeType

- Downloading GentityAltCodeType fixtures : done
Syncing model GentityEvent

- Downloading GentityEvent fixtures : done
Syncing model GentityFile

- Downloading GentityFile fixtures : done
Syncing model Gline

- Downloading Gline fixtures : done
Syncing model Gpoint

- Downloading Gpoint fixtures : done
Syncing model Instrument

- Downloading Instrument fixtures : done
Syncing model InstrumentType

- Downloading InstrumentType fixtures : done
Syncing model Lentity

- Downloading Lentity fixtures : done
Syncing model Organization

- Downloading Organization fixtures : done
Syncing model Overseer

- Downloading Overseer fixtures : done
Syncing model Person

- Downloading Person fixtures : done
Syncing model PoliticalDivision

- Downloading PoliticalDivision fixtures : done
Syncing model Station

- Downloading Station fixtures : done
Syncing model StationType

- Downloading StationType fixtures : done
Syncing model TimeStep

- Downloading TimeStep fixtures : done
Syncing model TimeZone

- Downloading TimeZone fixtures : done
Syncing model Timeseries

- Downloading Timeseries fixtures : done
Syncing model UnitOfMeasurement

- Downloading UnitOfMeasurement fixtures : done

6.2. DBSync Management Command 31

Enhydris Documentation, Release b

Syncing model Variable
- Downloading Variable fixtures : done

Syncing model WaterBasin
- Downloading WaterBasin fixtures : done

Syncing model WaterDivision
- Downloading WaterDivision fixtures : done

Creating Generic objects
Finished with Generic objects
Installing fixtures from file EventType.json
Installing fixtures from file FileType.json
Installing fixtures from file Gentity.json
Installing fixtures from file Garea.json
Installing fixtures from file GentityAltCode.json
Installing fixtures from file GentityAltCodeType.json
Installing fixtures from file GentityEvent.json
Installing fixtures from file GentityFile.json
Installing fixtures from file Gline.json
Installing fixtures from file Gpoint.json
Installing fixtures from file Instrument.json
Installing fixtures from file InstrumentType.json
Installing fixtures from file Lentity.json
Installing fixtures from file Organization.json
Installing fixtures from file Overseer.json
Installing fixtures from file Person.json
Installing fixtures from file PoliticalDivision.json
Installing fixtures from file Station.json
Installing fixtures from file StationType.json
Installing fixtures from file TimeStep.json
Installing fixtures from file TimeZone.json
Installing fixtures from file Timeseries.json
Installing fixtures from file UnitOfMeasurement.json
Installing fixtures from file Variable.json
Installing fixtures from file WaterBasin.json
Installing fixtures from file WaterDivision.json
Reinitializing foreign keys: done
Successfully installed 7319 objects from 26 fixtures.

The command above, replicates all remote data except for the UserProfiles (defined using the -e|--exclude
option) keeping all data and foreign keys intact but without preserving the object ids. If run multiple times, the script
can also update existing entries along with adding new ones. It’s important to note that when replicating an enhydris
database we should ALWAYS exclude the UserProfile since we don’t want user specific data to be transfered along with
the rest of the database.

When adding a cronjob, if you don’t want a regural mail to come after every sync, you should use the --silent
option which redirects stdout to /dev/null and only prints stderr. This, coupled with the -W python flag can
be used to make a cronjob send an email only whenever a problem was encountered. A sample cronjob which runs
every night would be something like this:

1 0 * * * /usr/bin/python -Wignore manage.py hcore_remotesyncdb -a hcore -r itia.hydroscope.gr -e UserProfile --silent

How stuff works
In this section, we’ll analyze the replication script and see how it operates behind the scenes. Of course, if you want
to understand how it works it’s probably better if you looked directly into its source code. Regarding the API which
provides us with the database objects, it’s been fully documented here. Here, we’ll see how the replication script
handles that data and adds it in the local database.

One important thing that you should be familiar with before we delve into the code is the difficulties that we came

32 Chapter 6. dbsync — Database Syncing

Enhydris Documentation, Release b

across when trying to implement this feature. Postgres (and most databases by design) keep track of foreign keys using
the primary key of an object which in all of enhydris models happens to be the object id. Since we want to aggregate
multiple instances into one, it’s only natural that there will be id collissions should we try to load the objects in the
database while keeping their original id. Thus, we decided that keeping the ids intact was not an option and we had to
find a way to preserve foreign keys and many to many relations without counting on object ids.

The best workaround is to add the objects without their foreign keys and many to many relationships and once the
objects are in the database we could reinitialize all object relationships. To do that, we added two extra fields on all
top-level objects named original_id and original_db which can be used to identify a specific object during
the syncing process given that we know its id and the database that we’re pulling the data from. Now the only thing was
to somehow store the foreign relations in a way that could be parsed easily and quite fast after the object initialization.
This was achieved using a multilevel dictionary which stores all object foreign relations and parsing this would be a
breeze using python’s optimized dictionary parsing routines.

Of course, that’s when the real problems surfaced. Many objects have Null=false in some foreign keys which
caused the replication to fail when trying to save objects with null foreign keys. In order to circumvent that, when
firing up the replication script we create a set of Dummy Objects aka objects that have null values and are used to
fill-in the not-Null foreign key dependencies of the to-be-installed objects. Once the replication objects are into the
database, we delete the Dummy Objects and update the foreign relations to the original ones which we have stored in
the dictionary mentioned above. This may be a slow process but is the only feasible solution that we came up with at
the time.

Having said all that, we can see what the workflow of the script looks like. First of all, given the application name,
it tries to import the specified app and list all available models in it. Using a multipass bubblesort algorithm, it sorts
all models using their dependencies as specified in the f_dependencies model field and given that there are no
circular dependencies, the final list contains the models in the correct replication order.

Using the model list, the script asks from the remote instance the JSON fixture of each model in the list which is
fetched and saved in a temporary dir (by default this is /tmp). Once all JSON fixtures have been fetched, the script
creates the generic objects and then deserializes each JSON file in the same order it was fetched. For each object
within the fixture, it first strips all foreign relations and reinitializes the not-null ones using the generic objects. Also,
the fields original_id and original_db are filled in and the foreign keys and many to many relations are saved in a
multilevel dictionary for future reference.

Once the deserialization of all fixtures has been completed, all objects are saved under the same transaction manage-
ment because we don’t want to have any objects left out from the replication routine. If everything has been completed
successfully, the script reinitializes all foreign keys and many to many relations from the dictionary and exits after
cleaning up. If a problem occurs all transactions are rolled back and the database is exactly as it was before the
replication attempt.

Note:

The generic objects which are used to fill temporary Not Null foreign relations are handcrafted. This means that should
the Enhydris database schema change drastically, this would probably require an update as well.

6.2. DBSync Management Command 33

Enhydris Documentation, Release b

34 Chapter 6. dbsync — Database Syncing

CHAPTER 7

permissions — Permissions

This module implements row level permission handling to use along with django’s generic permissions provided by
the django.contrib.auth module. More precissely, this module extends the User and Group models with a couple of
methods which take care of adding,deleting and checking of permissions. The Permission class keeps log of all
existing permissions in the database.

7.1 Permission Objects

Each instance of the Permission class represents a relationship between a user and an object and it is identified
by its name. The permission name can be any string like ‘edit’, ‘read’ or ‘delete’ and usually describes the kind of
permission it implements.

class permissions.Permission(name, content_type, object_id, content_object[, User, Group])

name
The name of the permission. Usually it’s a string denoting the meaning of the permission (eg ‘edit’, ‘read’,
‘delete’, etc)

content_type
This attribute stores the content type of the object over which this permission is effective.

object_id
This is the id of the related object.

content_object
This is a foreign key to the actual object (object instance) over this permission is effective.

user
If the permission is effective for a single user, this field points to this user otherwise it is null.

group
If the permission is effective for a whole group, this field points to this group otherwise it is null.

7.2 User/Group methods

As told before, the row level permissions add various methods to the User and Group models with which one can
add/edit/delete permissions over various objects and/or QuerySets.

class User:

35

http://docs.djangoproject.com/en/1.1/topics/auth/#django.contrib.auth.models.User

Enhydris Documentation, Release b

permissions.add_row_perm(instance, perm)
This method takes an object instance and the name of the permission and adds this permission for
the calling user over the object instance given. For example:

>>> station = Station.objects.get(id='10001')
>>> user = User.objects.get(username='testuser')
>>> user.add_row_perm(station, 'edit')

permissions.del_row_perm(instance, perm)
This method takes an object instance and a permission name and if the user has that permission over
the object, the method deletes it. If the user doesn’t have that permisssion, nothing happens.

>>> station = Station.objects.get(id='10001')
>>> user = User.objects.get(username='testuser')
>>> user.del_row_perm(station, 'edit')

permissions.has_row_perm(instance, perm)
This method takes an object instance and a permission name and checks whether the calling user has
that permission over the object instance. If this method is called from a superuser, it always returns
True. For example:

>>> station = Station.objects.get(id='10001')
>>> user = User.objects.get(username='testuser')
>>> user.has_row_perm(station, 'edit')
False

permissions.get_rows_with_permission(instance, perm)
This method is used to return all instances of the same conten type as the given instance over which
the user has the perm permission. For example:

>>> user = User.objects.get(username='testuser')
>>> user.get_rows_with_permission(Station,'edit')

This will return all Stations that the user can ‘edit’.

class Group:

All methods and their usage are the same as with User. However, it’s worth noting that once a
user inherits a permission from a group, the only way to remove that permission is to leave the
group since using del_row_perm() from the user won’t affect the group permissions.

permissions.add_row_perm(instance, perm)

permissions.del_row_perm(instance, perm)

permissions.has_row_perm(instance, perm)

permissions.get_rows_with_permission(instance, perm)

36 Chapter 7. permissions — Permissions

http://docs.djangoproject.com/en/1.1/topics/auth/#django.contrib.auth.models.Group

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

37

Enhydris Documentation, Release b

38 Chapter 8. Indices and tables

Python Module Index

d
dbsync, 29

p
permissions, 35

39

Enhydris Documentation, Release b

40 Python Module Index

Index

A
acronym (enhydris.hcore.models.Organization attribute),

17
actual_offset_minutes (enhydris.hcore.models.Timeseries

attribute), 22
actual_offset_months (enhydris.hcore.models.Timeseries

attribute), 22
add_row_perm() (in module permissions), 36
altitude (enhydris.hcore.models.Gpoint attribute), 17
approximate (enhydris.hcore.models.Gpoint attribute), 17
area (enhydris.hcore.models.Garea attribute), 18
asrid (enhydris.hcore.models.Gpoint attribute), 17

C
code (enhydris.hcore.models.PoliticalDivision attribute),

18
code (enhydris.hcore.models.TimeZone attribute), 21
content (enhydris.hcore.models.GentityFile attribute), 19
content_object (permissions.Permission attribute), 35
content_type (permissions.Permission attribute), 35

D
Database (class in dbsync), 29
date (enhydris.hcore.models.GentityEvent attribute), 19
date (enhydris.hcore.models.GentityFile attribute), 19
dbsync (module), 29
del_row_perm() (in module permissions), 36
descr (dbsync.Database attribute), 29
descr (enhydris.hcore.models.GentityFile attribute), 19
descr (enhydris.hcore.models.Lookup attribute), 16

E
end_date (enhydris.hcore.models.Instrument attribute),

21
end_date (enhydris.hcore.models.Overseer attribute), 20
end_date (enhydris.hcore.models.Station attribute), 20
enhydris.hcore.models.EventType (built-in class), 19
enhydris.hcore.models.FileType (built-in class), 19
enhydris.hcore.models.Garea (built-in class), 18
enhydris.hcore.models.Gentity (built-in class), 17

enhydris.hcore.models.GentityAltCode (built-in class),
18

enhydris.hcore.models.GentityAltCodeType (built-in
class), 18

enhydris.hcore.models.GentityEvent (built-in class), 19
enhydris.hcore.models.GentityFile (built-in class), 19
enhydris.hcore.models.Gline (built-in class), 18
enhydris.hcore.models.Gpoint (built-in class), 17
enhydris.hcore.models.Instrument (built-in class), 20
enhydris.hcore.models.InstrumentType (built-in class), 20
enhydris.hcore.models.Lentity (built-in class), 16
enhydris.hcore.models.Lookup (built-in class), 16
enhydris.hcore.models.Organization (built-in class), 17
enhydris.hcore.models.Overseer (built-in class), 20
enhydris.hcore.models.Person (built-in class), 16
enhydris.hcore.models.PoliticalDivision (built-in class),

18
enhydris.hcore.models.Station (built-in class), 20
enhydris.hcore.models.StationType (built-in class), 20
enhydris.hcore.models.Timeseries (built-in class), 22
enhydris.hcore.models.TimeStep (built-in class), 21
enhydris.hcore.models.TimeZone (built-in class), 21
enhydris.hcore.models.UnitOfMeasurement (built-in

class), 21
enhydris.hcore.models.Variable (built-in class), 21
enhydris.hcore.models.WaterBasin (built-in class), 18
enhydris.hcore.models.WaterDivision (built-in class), 18
ENHYDRIS_DISPLAY_COPYRIGHT_INFO (built-in

variable), 10
ENHYDRIS_FILTER_DEFAULT_COUNTRY (built-in

variable), 9
ENHYDRIS_FILTER_POLITICAL_SUBDIVISION1_NAME

(built-in variable), 9
ENHYDRIS_FILTER_POLITICAL_SUBDIVISION2_NAME

(built-in variable), 9
ENHYDRIS_MAP_DEFAULT_VIEWPORT (built-in

variable), 10
ENHYDRIS_MIN_VIEWPORT_IN_DEGS (built-in

variable), 10
ENHYDRIS_REMOTE_INSTANCE_CREDENTIALS

(built-in variable), 10

41

Enhydris Documentation, Release b

ENHYDRIS_SITE_CONTENT_IS_FREE (built-in vari-
able), 9

ENHYDRIS_SITE_STATION_FILTER (built-in vari-
able), 10

ENHYDRIS_STORE_TSDATA_LOCALLY (built-in
variable), 10

ENHYDRIS_TS_GRAPH_BIG_STEP_DENOMINATOR
(built-in variable), 10

ENHYDRIS_TS_GRAPH_CACHE_DIR (built-in vari-
able), 10

ENHYDRIS_TS_GRAPH_FINE_STEP_DENOMINATOR
(built-in variable), 10

ENHYDRIS_TSDATA_AVAILABLE_FOR_ANONYMOUS_USERS
(built-in variable), 9

ENHYDRIS_USE_OPEN_LAYERS (built-in variable),
10

ENHYDRIS_USERS_CAN_ADD_CONTENT (built-in
variable), 9

ENHYDRIS_WGS84_NAME (built-in variable), 10

F
file_type (enhydris.hcore.models.GentityFile attribute),

19
first_name (enhydris.hcore.models.Person attribute), 16

G
gentity (enhydris.hcore.models.GentityAltCode at-

tribute), 19
gentity (enhydris.hcore.models.GentityEvent attribute),

19
gentity (enhydris.hcore.models.Timeseries attribute), 22
get_rows_with_permission() (in module permissions), 36
gpoint1 (enhydris.hcore.models.Gline attribute), 18
gpoint2 (enhydris.hcore.models.Gline attribute), 18
group (permissions.Permission attribute), 35

H
has_row_perm() (in module permissions), 36
hidden (enhydris.hcore.models.Timeseries attribute), 22
hostname (dbsync.Database attribute), 29

I
initials (enhydris.hcore.models.Person attribute), 16
instrument (enhydris.hcore.models.Timeseries attribute),

22
ip_address (dbsync.Database attribute), 29
is_active (enhydris.hcore.models.Instrument attribute), 21
is_active (enhydris.hcore.models.Station attribute), 20
is_automatic (enhydris.hcore.models.Station attribute),

20
is_current (enhydris.hcore.models.Overseer attribute), 20

L
last_name (enhydris.hcore.models.Person attribute), 16

length (enhydris.hcore.models.Gline attribute), 18
length_minutes (enhydris.hcore.models.TimeStep at-

tribute), 21
length_months (enhydris.hcore.models.TimeStep at-

tribute), 21

M
manufacturer (enhydris.hcore.models.Instrument at-

tribute), 21
middle_names (enhydris.hcore.models.Person attribute),

16
mime_type (enhydris.hcore.models.FileType attribute),

19
model (enhydris.hcore.models.Instrument attribute), 21

N
name (dbsync.Database attribute), 29
name (enhydris.hcore.models.Gentity attribute), 17
name (enhydris.hcore.models.Instrument attribute), 21
name (enhydris.hcore.models.Organization attribute), 17
name (enhydris.hcore.models.Timeseries attribute), 22
name (permissions.Permission attribute), 35
nominal_offset_minutes (enhy-

dris.hcore.models.Timeseries attribute),
22

nominal_offset_months (enhy-
dris.hcore.models.Timeseries attribute),
22

O
object_id (permissions.Permission attribute), 35
overseers (enhydris.hcore.models.Station attribute), 20
owner (enhydris.hcore.models.Station attribute), 20

P
parent (enhydris.hcore.models.PoliticalDivision at-

tribute), 18
parent (enhydris.hcore.models.WaterBasin attribute), 18
Permission (class in permissions), 35
permissions (module), 35
person (enhydris.hcore.models.Overseer attribute), 20
point (enhydris.hcore.models.Gpoint attribute), 17
political_division (enhydris.hcore.models.Gentity at-

tribute), 17
precision (enhydris.hcore.models.Timeseries attribute),

22

R
remarks (enhydris.hcore.models.Gentity attribute), 17
remarks (enhydris.hcore.models.GentityFile attribute), 19
remarks (enhydris.hcore.models.Instrument attribute), 21
remarks (enhydris.hcore.models.Lentity attribute), 16
remarks (enhydris.hcore.models.Timeseries attribute), 22
report (enhydris.hcore.models.GentityEvent attribute), 19

42 Index

Enhydris Documentation, Release b

S
short_name (enhydris.hcore.models.Gentity attribute), 17
srid (enhydris.hcore.models.Gpoint attribute), 17
start_date (enhydris.hcore.models.Instrument attribute),

21
start_date (enhydris.hcore.models.Overseer attribute), 20
start_date (enhydris.hcore.models.Station attribute), 20
station (enhydris.hcore.models.Instrument attribute), 20
station (enhydris.hcore.models.Overseer attribute), 20
symbol (enhydris.hcore.models.UnitOfMeasurement at-

tribute), 21

T
time_step (enhydris.hcore.models.Timeseries attribute),

22
time_zone (enhydris.hcore.models.Timeseries attribute),

22
type (enhydris.hcore.models.GentityAltCode attribute),

19
type (enhydris.hcore.models.GentityEvent attribute), 19
type (enhydris.hcore.models.Instrument attribute), 20
type (enhydris.hcore.models.Station attribute), 20

U
unit_of_measurement (enhydris.hcore.models.Timeseries

attribute), 22
user (enhydris.hcore.models.GentityEvent attribute), 19
user (permissions.Permission attribute), 35
utc_offset (enhydris.hcore.models.TimeZone attribute),

21

V
value (enhydris.hcore.models.GentityAltCode attribute),

19
variable (enhydris.hcore.models.Timeseries attribute), 22
variables (enhydris.hcore.models.UnitOfMeasurement at-

tribute), 21

W
water_basin (enhydris.hcore.models.Gentity attribute), 17
water_division (enhydris.hcore.models.Gentity attribute),

17
water_division (enhydris.hcore.models.WaterBasin at-

tribute), 18

Index 43

	About Enhydris
	General
	Presentations, documents, papers

	Installation and configuration
	Download Enhydris
	Prerequisites
	Creating a spatially enabled database
	Configuring Enhydris
	Initializing the database
	Running Enhydris
	Post-install configuration
	Settings reference

	Copyright and credits
	The database
	Main principles
	Lookup tables
	Lentities
	Gentity and its direct descendants: Gpoint, Gline, Garea
	Additional information for generic gentities
	Station and its related models
	Time series and related models

	Webservice API
	Overview
	Client authentication
	Generic API calls
	Creating new time series and stations
	Appending data to a time series
	Timeseries data and GentityFile
	Cached time series data

	dbsync — Database Syncing
	DBSync Objects
	DBSync Management Command

	permissions — Permissions
	Permission Objects
	User/Group methods

	Indices and tables
	Python Module Index

